

U-Th dating of ostrich eggshell: Understanding the relationship between eggshell microstructure and diffusion and implications for sample preparation Jessica Valdés^{1,3}, Staci L. Loewy^{1,3}, Jay Banner¹, John Kappelman¹⁻³, and Lawrence Todd^{2,3} ¹ Department of Geological Sciences, the University of Texas, Austin, TX, ² Department of Anthropology, the University of Texas, Austin, TX, ³ Middle Stone Age NSF REU, NW Ethiopia

Background

Abstract: Dating the Middle Stone Age (~250-30 ka) is of great importance to studies of human evolution because this time period witnessed the origin of modern Homo sapiens in Africa, its migration out of the continent and across the rest of the world, advances in stone tool manufacture, and changes in foraging strategies. Techniques such as AMS 14C can only be applied to the youngest end of this interval. Because many human groups collected ostrich eggs, U-Th dating of ostrich eggshell (OES) has often been used to establish the age of archaeological sites. Uranium from soil diffuses into the OES crystal structure after burial, and measurement of U and its Th decay product, along with an estimation of U diffusion rates (Sharp et al., 2015) into the OES enables a determination of the time of burial. However, age determinations can be complicated by the incorporation of detrital Th from soil into the OES. Sharp et al. (2014) showed that the external OES layers contain high detrital Th, and Loewy et al. (2016) demonstrated that the pores in the internal palisade layer also contain high detrital Th. Pores provide a critical avenue between the external and internal surfaces of the OES for Th to infiltrate the eggshell. We completed high-resolution CT scans of OES to map the number, 3D pattern, and volume of the pores. Rather than a single pore, the structure consists of numerous very small "satellite" pores oriented circumferentially around a large central pore. Total pore volume can be significant. In order to minimize the effect of detrital Th, we recommend that sample preparation combine the removal of the two outside layers of the eggshell with drilling out the area around each pore. Minimizing detrital Th diminishes the impact of the correction calculation, which is critical for precise age determinations.

Dating the Middle Stone Age (MSA) is of great importance to studies of human evolution because this time period witnessed the origin of modern *Homo sapiens* in Africa, its migration out of the continent (see map at right) and across the rest of the world, advances in stone tool manufacture, and changes in foraging strategies.

Commonly-used radiocarbon dating can only be applied to the youngest end of this time interval. Many human groups collected ostrich eggs for food, and used the empty shells as containers. Therefore, many sites contain ostrich eggshell fragments. U-Th dating of ostrich eggshell (OES) may be useful to establish the age of archaeological sites.

Uranium from soil diffuses into the OES crystal structure after burial and decays to Th. Measurement of U and its Th decay product enables determination of the time since burial. Two issues limit precise age determination: 1) the lack of constraint of the rate and timing of U diffusion into the OES after burial; and 2) incorporation of Th into the OES from infiltration of Th-rich soil particles into pores and cracks of the OES.

http://www.ucmp.berkeley.edu/science/eggshell/eggshell1.php

<u>U-diffusion</u>: In an ideal situation, U would diffuse into the OES quickly after burial and then diffusion would stop so that the OES structure would act as a closed box. The U would decay to Th inside the OES, and subsequent measurement of U and Th would reflect the timing of burial of the OES. If diffusion was slow and occurred continuously while the OES was buried, then the calculated U-Th age would be younger than the actual burial age. Ongoing work attempts to understand diffusion (Sharp et al., 2014, 2015; and see discussion of our future work at left).

Soil Th: In an ideal situation, all of the Th in an ancient OES would come from the decay of U. However much of the Th in OES comes from soil particles that also fill the natural pores of the OES (Loewy et al., 2016) and the cracks in the exterior crystal and interior cone layers (Sharp et al., 2014). The isotope of Th from the decay of U is ²³⁰Th. The soil Th is mostly ²³²Th, but includes a little ²³⁰Th. To determine the amount of ²³⁰Th from decay of U, we must subtract the ²³⁰Th from the soil-derived Th. Minimizing the quantity of soil-derived Th in the analyses will decrease the necessary correction and greatly improve precision. Work presented here focuses on a new method for eliminating soil-derived Th from analyses.

High-resolution CT used to image the pore cluster structure in 3D.

The University of Texas at Austin

Jackson School of Geosciences

2017 Annual Meeting Paleoanthropology Society Vancouver

SGeosciences

- Sharp, W. D., Fylstra, N.D., Faith, J.T., Peppe, D.J. and Tryon, C.A. 2014. U-series dating of ostrich eggshells. Goldschmidt Mtg., Sacramento, CA, June 8-13, 2014.

- Sharp, W, Fylstra, N, Tryon, C., and Peppe D. 2015. U-Th burial dates on ostrich egg shell. AGU Mtg, San Francisco, CA Dec 14-18, 2015.